Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes

Dimitrios-Georgios Akestoridis, Madhumitha Harishankar, Michael Weber, and Patrick Tague

Carnegie Mellon University

ACM WiSec 2020

• Smart home network security affects the physical security of residents

- Smart home network security affects the physical security of residents
- Zigbee supports two security models:
 - **Distributed** \Rightarrow recommended for ease of use
 - **Centralized** \Rightarrow recommended for higher security

- Smart home network security affects the physical security of residents
- Zigbee supports two security models:
 - **Distributed** ⇒ recommended for ease of use
 - **Centralized** \Rightarrow recommended for higher security
- High-level view of a Zigbee packet without any security features:

SYNC Header	PHY Header	MAC Header	NWK Header	APS Header	APS Payload	MAC Footer
	Defined by the IEEE 802.15.4 standard			l by the Alliance	Defined by the Zigbee Alliance and Manufacturers	Defined by the IEEE 802.15.4 standard

- Smart home network security affects the physical security of residents
- Zigbee supports two security models:
 - **Distributed** ⇒ recommended for ease of use
 - **Centralized** \Rightarrow recommended for higher security
- High-level view of a Zigbee packet without any security features:

SYNC Header	PHY Header	MAC Header	NWK Header	APS Header	APS Payload	MAC Footer
	Defined by the IEEE 802.15.4 standard			l by the Alliance	Defined by the Zigbee Alliance and Manufacturers	Defined by the IEEE 802.15.4 standard

We study the security consequences of the design choice to disable **MAC-layer security** in centralized Zigbee networks

• Security objectives:

• Authenticity, Integrity, Confidentiality, and Availability

• Security objectives:

• Authenticity, Integrity, Confidentiality, and Availability

• Assumptions:

• The end user and their devices are trusted

• Security objectives:

• Authenticity, Integrity, Confidentiality, and Availability

• Assumptions:

- The end user and their devices are trusted
- The attacker is an outsider with potentially more powerful hardware
- The attacker has no prior knowledge of any network key
- The attacker is aware of the default Trust Center link key
- The attacker may have access to a subset of install codes

• Security objectives:

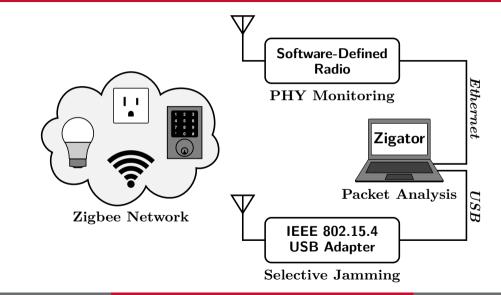
• Authenticity, Integrity, Confidentiality, and Availability

• Assumptions:

- The end user and their devices are trusted
- The attacker is an outsider with potentially more powerful hardware
- The attacker has no prior knowledge of any network key
- The attacker is aware of the default Trust Center link key
- The attacker may have access to a subset of install codes
- We do not consider uncommon device configurations like low-power routers

• Security objectives:

• Authenticity, Integrity, Confidentiality, and Availability


• Assumptions:

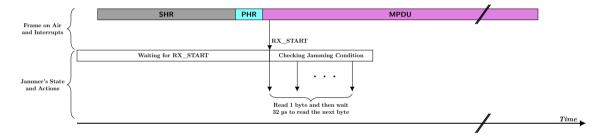
- The end user and their devices are trusted
- The attacker is an outsider with potentially more powerful hardware
- The attacker has no prior knowledge of any network key
- The attacker is aware of the default Trust Center link key
- The attacker may have access to a subset of install codes
- We do not consider uncommon device configurations like low-power routers

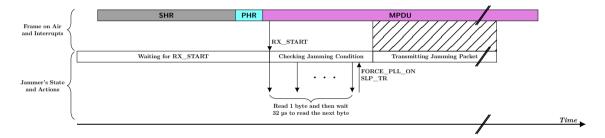
• Attacker's goal:

• Obtaining the network key from an already formed Zigbee network

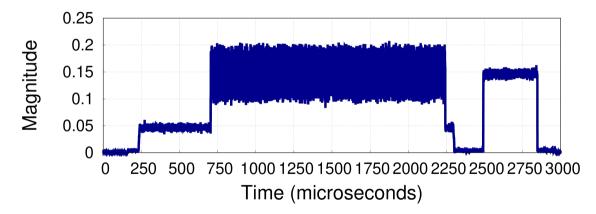
Security Analysis with Zigator

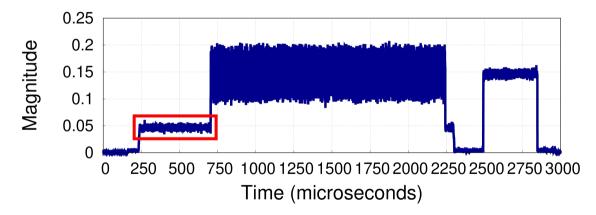
Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes

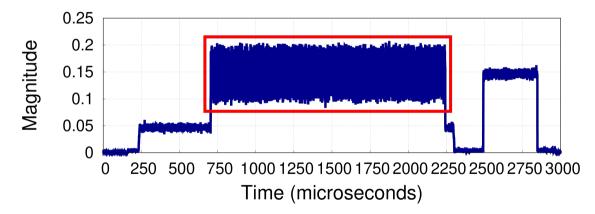

Frame on Air and Interrupts	·		
Jammer's State and Actions	Waiting for RX_START]	
	×		 Time

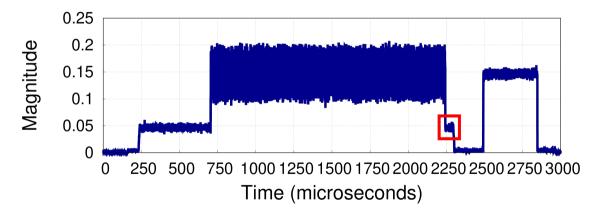


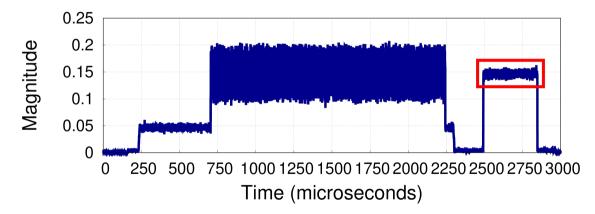
Time



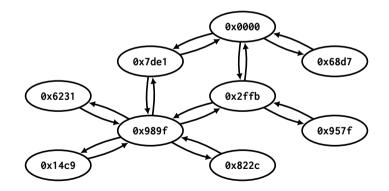

Time

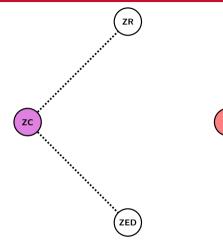


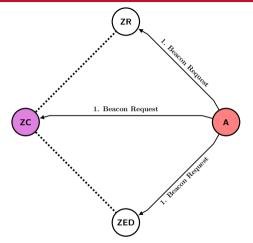


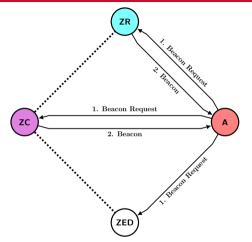


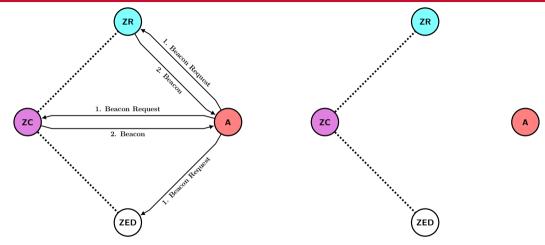
Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes

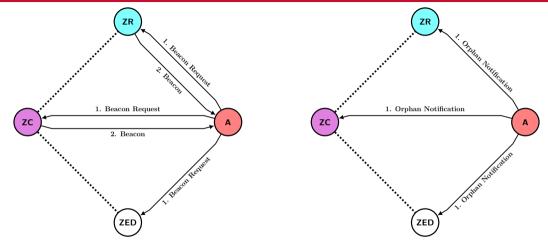

Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes

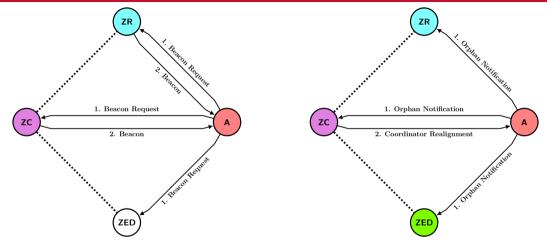

- We captured packets that were generated from **ten commercial Zigbee devices**
- We conducted **eight experiments** that differed in the smart hub that was used and the physical topology of the devices
- Our experiments lasted about 34.644 hours in total and resulted in a dataset of 571,509 valid packets

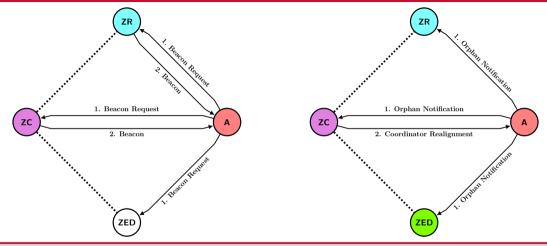



Inferring the Topology of a Zigbee Network


- Log distinct pairs of source and destination addresses
- Trivial identification of the **Zigbee Coordinator** \Rightarrow always 0×0000

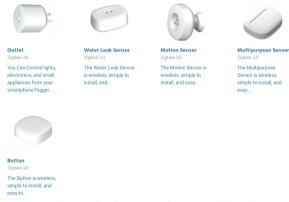






Passive identification based on Data Request and Link Status commands

Akestoridis et al.


Zigator: Analyzing the Security of Zigbee-Enabled Smart Homes

Examining Short and Extended Addresses

- NWK commands contain both the extended and the short address of their source
- The extended address in the auxiliary header of the NWK layer matches with the short address of the source in the MAC header

Examining Short and Extended Addresses

- NWK commands contain both the extended and the short address of their source
- The extended address in the auxiliary header of the NWK layer matches with the short address of the source in the MAC header
- 28:6d:97:00:01:09:4b:c8 ⇒ 0x286d97
 - \Rightarrow SAMJIN Co., Ltd.

Source: https://zigbeealliance.org/product_type/certified_product/

Examining Short and Extended Addresses

- NWK commands contain both the extended and the short address of their source
- The extended address in the auxiliary header of the NWK layer matches with the short address of the source in the MAC header
- 28:6d:97:00:01:09:4b:c8 ⇒ 0x286d97
 - \Rightarrow SAMJIN Co., Ltd.

	0	30	0
	Vater Leak Sensor ligbee 3.0	Motion Sensor Zigbee 3.0	Multipurpose Sensor Zigbee 3.0
electronics, and small	The Water Leak Sensor s wireless, simple to nstall, and	The Motion Sensor is wireless, simple to install, and easy	The Multipurpose Sensor is wireless, simple to install, and easy
Button		let	
Zigbee 3.0 The Button is wireless, simple to install, and easy to	3. Mul	tipurpose Senso ton	or

Source: https://zigbeealliance.org/product_type/certified_product/

Identifying Encrypted NWK Commands

NWK Command Name

Route Request Route Reply Network Status Leave Route Record Rejoin Request Rejoin Response Link Status Network Report Network Update End Device Timeout Request End Device Timeout Response

Identifying Encrypted NWK Commands

NWK Command Name	Payload Length (bytes)
Route Request	{5, 13}
Route Reply	{7, 15, 23 }
Network Status	$\{1, 3\}$
Leave	{1 }
Route Record	$\{1, 3, 5, \dots\}$
Rejoin Request	{1 }
Rejoin Response	{3 }
Link Status	$\{1, 4, 7, \dots\}$
Network Report	{ 11 , 13, 15, }
Network Update	{12 }
End Device Timeout Request	{2 }
End Device Timeout Response	{2}

Identifying Encrypted NWK Commands

NWK Command Name	Payload Length (bytes)	$\operatorname{Radius}^{\dagger}$
Route Request	{5, 13}	$\{2d, 2d-1, \dots\}$
Route Reply	{7, 15, 23 }	$\{2d, 2d-1, \ldots\}$
Network Status	$\{1, 3\}$	$\{2d, 2d-1, \ldots\}$
Leave	{1 }	{1 }
Route Record	$\{1, 3, 5, \dots\}$	$\{2d, 2d-1, \ldots\}$
Rejoin Request	{1 }	{1 }
Rejoin Response	{3 }	{1 }
Link Status	$\{1, 4, 7, \dots\}$	{1 }
Network Report	{ 11 , 13, 15, }	$\{2d, 2d-1, \ldots\}$
Network Update	{12 }	$\{2d, 2d-1, \dots\}$
End Device Timeout Request	{2}	{1 }
End Device Timeout Response	{2}	{1}

Identifying Encrypted NWK Commands

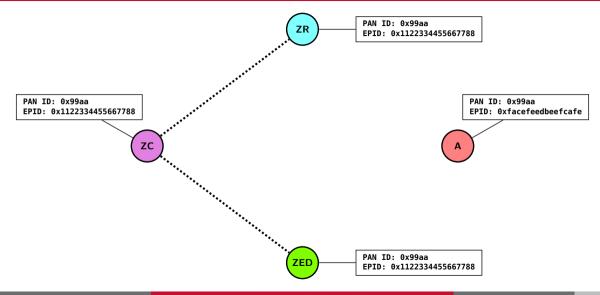
NWK Command Name	Payload Length (bytes)	$\operatorname{Radius}^\dagger$	NWK Destination Type	NWK Source Type
Route Request	{5, 13}	$\{2d, 2d-1, \dots\}$	{0xfffc}	$\{\mathbf{ZC}, \mathbf{ZR}, \mathbf{ZED}\}$
Route Reply	{7, 15, 23 }	$\{2d, 2d-1, \ldots\}$	{ ZC , ZR }	{ ZC , ZR }
Network Status	$\{1, 3\}$	$\{2d, 2d-1, \ldots\}$	{ZC, ZR, ZED, 0xfffd}	{ZC, ZR , ZED}
Leave	{1 }	{1 }	$\{ZC, ZR, ZED, 0xfffd\}$	$\{ZC, ZR, ZED\}$
Route Record	$\{1, 3, 5, \dots\}$	$\{2d, 2d-1, \dots\}$	$\{\mathbf{ZC}, \mathbf{ZR}\}$	{ZC, ZR , ZED }
Rejoin Request	{1 }	{1 }	{ ZC , ZR }	$\{\mathbf{ZR}, \mathbf{ZED}\}$
Rejoin Response	{3 }	{1 }	$\{\mathbf{ZR}, \mathbf{ZED}\}$	{ ZC , ZR }
Link Status	$\{1, 4, 7, \dots\}$	{1 }	{ 0xfffc }	{ ZC , ZR }
Network Report	{ 11 , 13, 15, }	$\{2d, 2d-1, \dots\}$	$\{\mathbf{ZC}\}^{\ddagger}$	{ ZR } [‡]
Network Update	{12}	$\{2d, 2d-1, \dots\}$	{0xffff}	$\{\mathbf{ZC}\}^{\ddagger}$
End Device Timeout Request	{2}	{1 }	$\{\mathbf{ZC}, \mathbf{ZR}\}$	{ZED}
End Device Timeout Response	{2}	{1}	{ ZED }	$\{\mathbf{ZC}, \mathbf{ZR}\}$

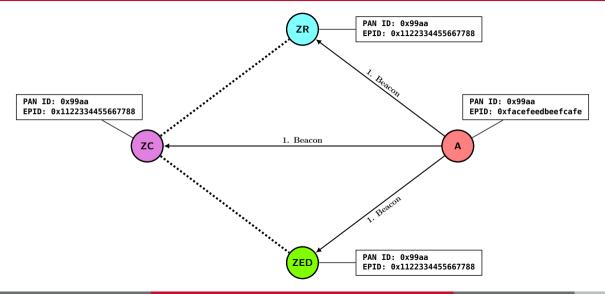
Identifying Encrypted NWK Commands

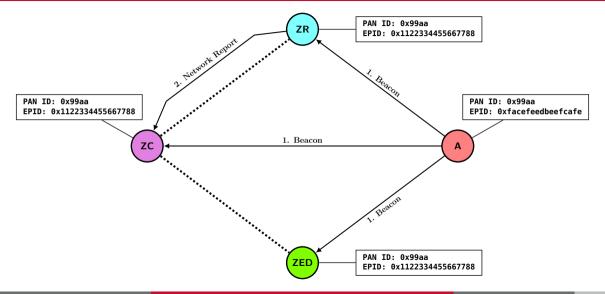
NWK Command Name	Payload Length (bytes)	$\operatorname{Radius}^{\dagger}$	NWK Destination Type	NWK Source Type
Route Request	{5, 13}	$\{2d, 2d-1, \dots\}$	{0xfffc}	{ZC, ZR, ZED}
Route Reply	$\{7, 15, 23\}$	$\{2d, 2d-1, \ldots\}$	{ ZC , ZR }	{ ZC , ZR }
Network Status	$\{1, 3\}$	$\{2d, 2d-1, \ldots\}$	{ZC, ZR, ZED, 0xfffd}	$\{ZC, ZR, ZED\}$
Leave	{1 }	{1 }	$\{ZC, ZR, ZED, 0xfffd\}$	$\{ZC, ZR, ZED\}$
Route Record	$\{1, 3, 5, \dots\}$	$\{2d, 2d-1, \dots\}$	$\{\mathbf{ZC}, \mathbf{ZR}\}$	{ZC, ZR , ZED }
Rejoin Request	{1 }	{1 }	{ ZC , ZR }	$\{\mathbf{ZR}, \mathbf{ZED}\}$
Rejoin Response	{3 }	{1 }	$\{\mathbf{ZR}, \mathbf{ZED}\}$	{ ZC , ZR }
Link Status	$\{1, 4, 7, \dots\}$	{1 }	{ 0xfffc }	{ ZC , ZR }
Network Report	{ 11 , 13, 15, }	$\{2d, 2d-1, \dots\}$	$\{\mathbf{ZC}\}^{\ddagger}$	{ ZR } [‡]
Network Update	{12 }	$\{2d, 2d-1, \ldots\}$	{ 0xffff }	$\{\mathbf{ZC}\}^{\ddagger}$
End Device Timeout Request	{2}	{1 }	$\{\mathbf{ZC}, \mathbf{ZR}\}$	{ZED}
End Device Timeout Response	{2 }	{1 }	$\{ZED\}$	$\{\mathbf{ZC}, \mathbf{ZR}\}$

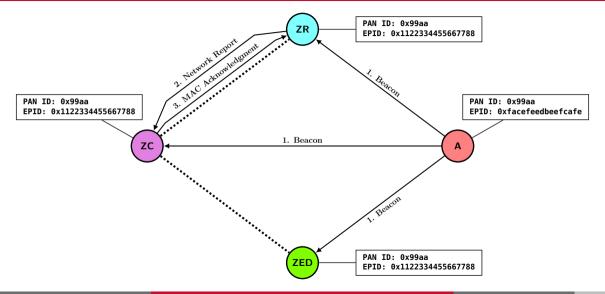
The decision tree that we developed is included in our paper

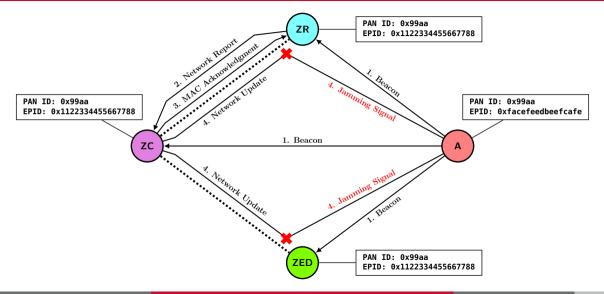
Commissioning of Zigbee Devices

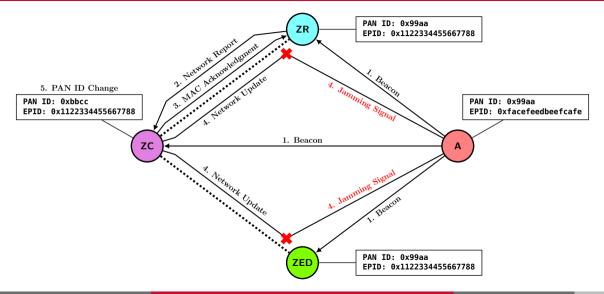

- Legacy Zigbee devices use the default Trust Center link key to join a network
- A Zigbee 3.0 device can join a Zigbee 3.0 network using an **install code**

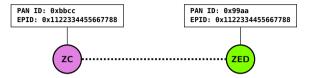


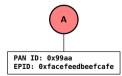

Commissioning of Zigbee Devices

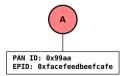

- Legacy Zigbee devices use the default Trust Center link key to join a network
- A Zigbee 3.0 device can join a Zigbee 3.0 network using an **install code**
- The attacker's main strategy is to launch a denial-of-service attack that would force the end user to factory reset a device that uses a known Trust Center link key

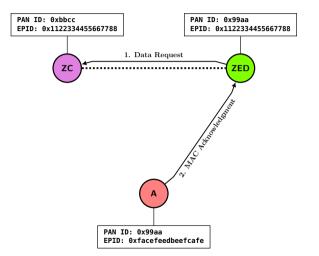


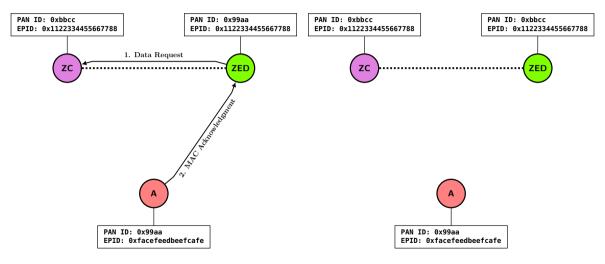


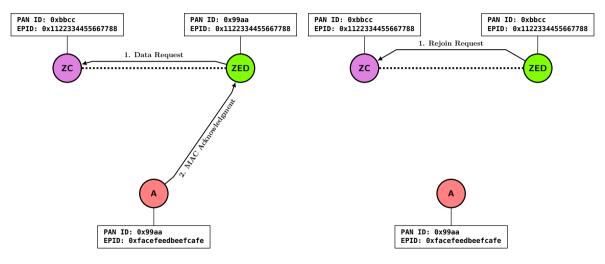


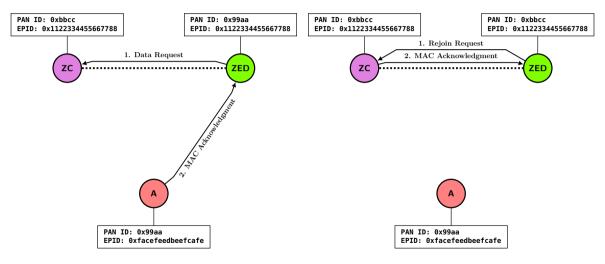


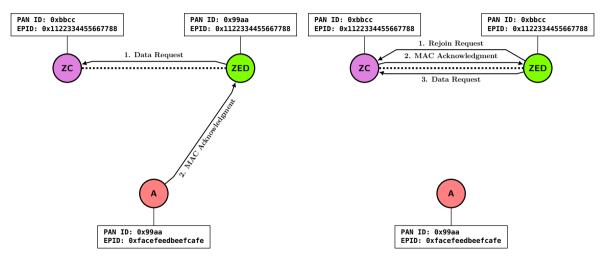


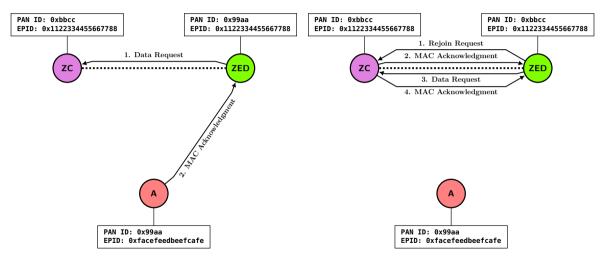


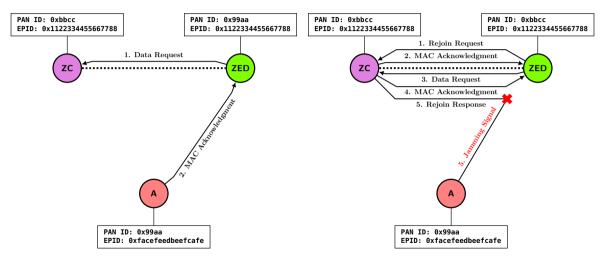


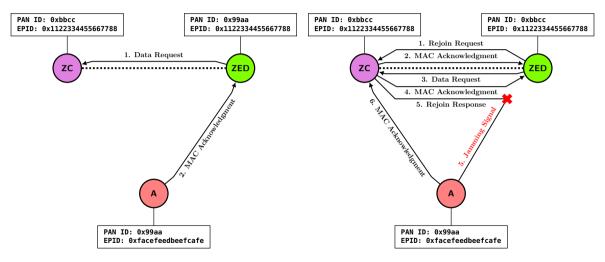


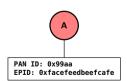


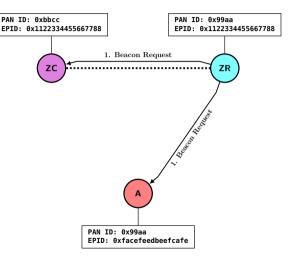


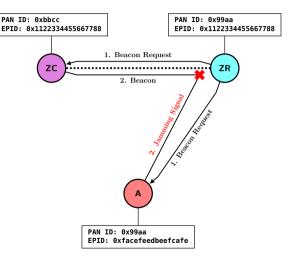











- Some of our Zigbee devices were able to rejoin the network even if we jammed all **Rejoin Responses**
- By jamming the **beacons** with the updated PAN ID we could keep any Zigbee device disconnected

- Some of our Zigbee devices were able to rejoin the network even if we jammed all **Rejoin Responses**
- By jamming the **beacons** with the updated PAN ID we could keep any Zigbee device disconnected

- Some of our Zigbee devices were able to rejoin the network even if we jammed all **Rejoin Responses**
- By jamming the **beacons** with the updated PAN ID we could keep any Zigbee device disconnected

Responsible Disclosure

- Zigbee Routers may not initiate or significantly delay the **rejoin process** when they fail to receive the Network Update command:
 - Our SmartThings Smart Bulb did not initiate the rejoin process within 38 hours

Responsible Disclosure

- Zigbee Routers may not initiate or significantly delay the **rejoin process** when they fail to receive the Network Update command:
 - Our SmartThings Smart Bulb did not initiate the rejoin process within 38 hours
- We received the following comments from the **Zigbee Alliance**:
 - Specification changes will prevent malicious PAN ID changes
 - A more aggressive algorithm will be required to avoid missing PAN ID changes
 - It is difficult for the network key to be leaked from Zigbee 3.0 devices

Responsible Disclosure

- Zigbee Routers may not initiate or significantly delay the **rejoin process** when they fail to receive the Network Update command:
 - Our SmartThings Smart Bulb did not initiate the rejoin process within 38 hours
- We received the following comments from the **Zigbee Alliance**:
 - Specification changes will prevent malicious PAN ID changes
 - A more aggressive algorithm will be required to avoid missing PAN ID changes
 - It is difficult for the network key to be leaked from Zigbee 3.0 devices
- We recommend the following security enhancements:
 - The Trust Center link key should be **reconfigurable** over an out-of-band communication channel
 - The end users should be **made aware** of the security risks that the use of a legacy Zigbee device would introduce to their networks

Conclusion

- The lack of MAC-layer security exposes Zigbee networks to several passive and active attacks
- Developed software:
 - https://github.com/akestoridis/zigator
 - https://github.com/akestoridis/atusb-attacks
 - https://github.com/akestoridis/grc-ieee802154
 - https://github.com/akestoridis/wireshark-zigbee-profile
- CRAWDAD dataset cmu/zigbee-smarthome:
 - https://doi.org/10.15783/c7-nvc6-4q28
- Additional resources:
 - http://mews.sv.cmu.edu/research/zigator/

17