Zigbee Network Security

Dimitrios-Georgios Akestoridis

akestoridis@cmu.edu

2020 CyLab Partners Conference

CyLab Carnegie Mellon University

What is Zigbee?

- Zigbee is a wireless communication protocol that is designed to achieve:
 - Low power consumption
 - Self-forming mesh networking
 - Universal application-layer interactions
 - Low manufacturing cost

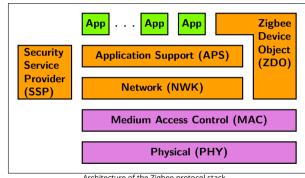
What is Zigbee?

- Zigbee is a wireless communication protocol that is designed to achieve:
 - Low power consumption
 - Self-forming mesh networking
 - Universal application-layer interactions
 - Low manufacturing cost
- Comparison with other protocols:

	Data Rate	Battery Life
Wi-Fi	High	Low
Bluetooth	Medium	Medium
Zigbee	Low	High

Examples of Zigbee Devices

Schlage Connect Smart Deadbolt


SmartThings Outlet (IM6001-OTP01)

SmartThings Hub (IM6001-V3P01)

Security Concerns for Zigbee Networks

- The security of Zigbee networks can affect the **physical security** of smart home residents
- The Zigbee protocol provides security services for packets on its **NWK and APS layers**
- Currently, Zigbee networks do not utilize MAC-layer security services

Architecture of the Zigbee protocol stack

Key Contributions^[1]

- We developed **Zigator** to analyze the security of Zigbee networks:
 - https://github.com/akestoridis/zigator

^[1] D.-G. Akestoridis, M. Harishankar, M. Weber, and P. Tague, "Zigator: Analyzing the security of Zigbee-enabled smart homes," in *Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec)*, 2020, pp. 77–88. DOI: 10.1145/3395351.3399363

Key Contributions^[1]

- We developed **Zigator** to analyze the security of Zigbee networks:
 - https://github.com/akestoridis/zigator
- We built a **testbed** to study operational Zigbee networks in depth:
 - Packet Sniffing

 Software-Defined Radio
 - Packet Injection ⇒ Software-Defined Radio and IEEE 802.15.4 USB Adapter
 - Packet Jamming

 IEEE 802.15.4 USB Adapter

^[1] D.-G. Akestoridis, M. Harishankar, M. Weber, and P. Tague, "Zigator: Analyzing the security of Zigbee-enabled smart homes," in *Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec)*, 2020, pp. 77–88. DOI: 10.1145/3395351.3399363

Key Contributions^[1]

- We developed **Zigator** to analyze the security of Zigbee networks:
 - https://github.com/akestoridis/zigator
- We built a **testbed** to study operational Zigbee networks in depth:
 - Packet Sniffing

 Software-Defined Radio
 - ullet Packet Injection \implies Software-Defined Radio and IEEE 802.15.4 USB Adapter
 - Packet Jamming

 IEEE 802.15.4 USB Adapter
- We implemented and validated selective jamming and spoofing attacks that can lead to the exposure of the network key:
 - https://github.com/akestoridis/atusb-attacks

^[1] D.-G. Akestoridis, M. Harishankar, M. Weber, and P. Tague, "Zigator: Analyzing the security of Zigbee-enabled smart homes," in *Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec)*, 2020, pp. 77–88. DOI: 10.1145/3395351.3399363

 We discovered that an attacker can disconnect Zigbee devices by causing a PAN ID conflict and selectively jamming Network Update commands

- We discovered that an attacker can disconnect Zigbee devices by causing a PAN ID conflict and selectively jamming Network Update commands
- We demonstrated how an attacker can then keep Zigbee devices disconnected in order to force the end user to factory reset them

- We discovered that an attacker can disconnect Zigbee devices by causing a PAN ID conflict and selectively jamming Network Update commands
- We demonstrated how an attacker can then keep Zigbee devices disconnected in order to force the end user to factory reset them
- We observed that some Zigbee Routers either did not initiate or significantly delayed the rejoin process after the jamming of Network Update commands

- We discovered that an attacker can disconnect Zigbee devices by causing a PAN ID conflict and selectively jamming Network Update commands
- We demonstrated how an attacker can then keep Zigbee devices disconnected in order to force the end user to factory reset them
- We observed that some Zigbee Routers either did not initiate or significantly delayed the rejoin process after the jamming of Network Update commands
- We responsibly disclosed our findings to the **Zigbee Alliance**:
 - Specification changes will prevent malicious PAN ID changes
 - A more aggressive algorithm will be required to avoid missing PAN ID changes
 - The firmware of SmartThings hubs was modified to ignore PAN ID conflicts^[2]

^[2] SmartThings Community. (2020), Hub firmware release notes - 0.31.4, [Online]. Available: https://community.smartthings.com/t/hub-firmware-release-notes-0-31-4/197941

Future Research Directions

- Extend our security analysis to the application layer of the Zigbee stack
- Study security enhancements for the Zigbee protocol
- Develop monitoring tools for Zigbee networks
- Zigator project webpage:
 - http://mews.sv.cmu.edu/research/zigator/

Carnegie Mellon University

