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Abstract—Zigbee networks can be found in a wide range of
smart environments that incorporate low-power devices to report
sensed events and accept actuation commands wirelessly. How-
ever, there is a lack of open-source software tools that consumers
can use to monitor their Zigbee networks and ensure that they
remain secure. There are several attacks that malicious users
can launch against Zigbee networks that would go unnoticed
by their network administrators if they are not making use of
an appropriate network security monitoring system, which is
especially concerning in cases where the Zigbee devices have
critical capabilities such as unlocking doors. In this work we
introduce the architecture of a distributed system for monitoring
the security of Zigbee networks, called HiveGuard. Additionally,
we present an energy depletion attack against battery-powered
Zigbee devices that we use to test the monitoring capabilities of
our prototype implementation. We show that it is possible for an
outside attacker to completely deplete the energy of commercial
Zigbee devices that are powered by one 3-volt CR2450 lithium
battery in less than 16 hours. Our prototype implementation
of HiveGuard successfully generated an alert for each attack
that we launched and provided additional information about the
operation of the Zigbee network for further inspection. We are
publicly releasing the source code that we wrote and the packets
that we captured during our experiments in order to enable
researchers to closely examine our prototype implementation and
study novel intrusion detection techniques for Zigbee networks.

I. INTRODUCTION

Zigbee [1] is a wireless communication protocol that is
often used in smart environments for providing networking
capabilities to battery-powered sensors and actuators, such as
motion sensors and door locks. The lower layers of the Zigbee
stack (i.e., the Physical (PHY) and Medium Access Control
(MAC) layers) have been defined by the IEEE 802.15.4-2011
standard [2], whereas its upper layers have been defined by
the Zigbee Alliance, which consist of the Network (NWK)
and Application (APL) layers [3]. Each Zigbee network uses a
Personal Area Network Identifier (PAN ID) to distinguish itself
from other nearby networks and utilizes either the distributed
or the centralized security model. Distributed Zigbee networks
support features that lower their security as a trade-off for
higher usability, while centralized Zigbee networks include a
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Zigbee Coordinator that typically operates as the Trust Center
to provide higher security [4]. Zigbee devices use a network
key to encrypt and authenticate most of their packets with
payload in the upper layers, which is shared among all the
devices of a Zigbee network. Link keys are used between pairs
of Zigbee devices, with one of their most common uses being
the transportation of the network key to newly added devices.

Although the Zigbee protocol provides confidentiality and
authenticity services for data originating from its upper layers,
Zigbee networks remain largely unmonitored. Several types
of attacks can be launched against them that their owners
would not be able to notice without utilizing a system that can
monitor the security of Zigbee networks. For example, Ronen
et al. demonstrated a Zigbee worm against distributed Zigbee
networks and made use of Zigbee traffic exclusively due to
its unmonitored nature [5]. In this work, we are interested
in detecting and monitoring attacks that an outside attacker
(i.e., a malicious device that has no knowledge of the victim’s
network key) can launch against centralized Zigbee networks.
For instance, Akestoridis et al. demonstrated a set of attacks
that take advantage of the fact that Zigbee networks are not
utilizing MAC-layer security services [6]. Furthermore, an
outside attacker could be motivated by multiple malicious
reasons to launch an energy depletion attack against a battery-
powered Zigbee device, including the following:

• To prevent the device from notifying its owner about
sensed events (e.g., the detection of motion).

• To prevent the device from receiving actuation commands
from its owner (e.g., a command to lock a door).

• To trick the owner of the device to factory reset it and
potentially expose the network key [6], [7].

• To force frequent battery replacements for the owner of
the device, leading to either an increased maintenance
cost or abandonment of the technology.

As we explain in Section II, we were able to advance the state
of the art in such attacks. While the impact of our attack can
be reduced with appropriate firmware updates, the impact of
such attacks cannot be eliminated due to the shared nature
of the wireless medium. However, the network administrator
could utilize a network security monitoring system that can
detect such attacks in order to take appropriate actions.



Unfortunately, there is a lack of robust open-source software
tools that consumers can use to continuously monitor Zigbee
traffic and be notified about potential security issues. This
motivated us to develop HiveGuard: a distributed system that
interacts with a set of wireless intrusion detection system
(WIDS) sensors, a database server, and a notification server
to provide archiving, aggregation, inspection, visualization,
and alert services. More specifically, our system operates
independently from the monitored Zigbee network and it
follows a rule-based approach for the detection of attacks. In
summary, our contributions are the following:

• We present the architecture of a network security mon-
itoring system for Zigbee networks, called HiveGuard,
and its prototype implementation in JavaScript.

• We enhance existing open-source Python software tools
in order to deploy WIDS sensors that are tailored for
detecting attacks against Zigbee networks.

• We develop an energy depletion attack in C and test it
against commercial battery-powered Zigbee devices to
demonstrate our prototype’s monitoring capabilities.

• We show that the energy of four commercial Zigbee
devices that use a 3-volt CR2450 lithium battery can be
depleted by an outside attacker in less than 16 hours.

• We publicly release the source code that we wrote and
the packets that our WIDS sensors captured during the
energy depletion attacks that we launched.

The rest of this paper is organized as follows. In Section II
we review work related to HiveGuard and our attack. Then, we
delineate our system architecture and our energy depletion at-
tack in Sections III and IV respectively. Finally, we report our
experimental results in Section V and conclude in Section VI.

II. RELATED WORK

Although there are several open-source software tools that
are frequently used in network security monitoring deploy-
ments, such as Snort [8] and Zeek (formerly known as
Bro) [9], most of them are mainly focusing on analyzing
traditional IP-based networks. There are multiple communica-
tion protocols that are being used in Internet-of-Things (IoT)
applications that are not based on IP, with Zigbee being one of
the most widely used ones for controlling and monitoring low-
power devices [1]. However, extending such software tools
to also support non-IP networks is not a trivial task, given
the need for appropriate packet dissectors as well as analysis
modules for protocol-specific interactions and attack surfaces.
For instance, even though Kismet [10] is frequently used as
a WIDS for Wi-Fi networks, its support for Zigbee networks
appears to be under development for several years. As a result,
we decided to develop HiveGuard as a separate software tool
that is tailored for monitoring the security of Zigbee networks.

To the best of our knowledge, there is no readily available
open-source WIDS that is comprehensive and tailored for de-
tecting attacks against Zigbee networks. BeekeeperWIDS [11]
is the only open-source WIDS that we are aware of that fo-
cuses on IEEE 802.15.4-based networks, but it is not currently
detecting any high-impact attacks against Zigbee networks and

it has not been updated since 2014. Furthermore, its drones
are simply making HTTP POST requests to push captured
packets to a central database for further analysis. In contrast,
we designed HiveGuard to periodically fetch collected data,
detected events, and compressed pcap files from stand-alone
WIDS sensors with HTTP GET requests. Pulling data from
sensors is a common design choice for traditional network
security monitoring systems [12], as well as systems that
monitor real-time data like Prometheus [13], given that the
reporting rate is then controlled by the monitoring system
itself. We decided to not include BeekeeperWIDS in our
experimental setup because, currently, it does not have any
modules for detecting the attacks that we describe in this paper.

Sadikin et al. proposed a hybrid intrusion detection system
for Zigbee networks [14], but there are several differences
between their work and ours. First, they provide little infor-
mation about the architecture of their system and its imple-
mentation. For example, regarding the collection of Zigbee
traffic, they simply mention that it is “sniffed and stored to
the rule engine for further analysis” [14], while we provide
a detailed description of our system design in Section III.
Second, Sadikin et al. used a distributed Zigbee network for
their experimental setup, whereas we used a centralized one.
We prioritized the development of attack detection rules for
the most secure configuration of Zigbee networks instead of
focusing on attacks that are limited to the distributed security
model. Third, while our systems share some attack detection
tasks, we cannot compare the technical aspects of our systems
because their source code does not seem to be publicly
available. By making our prototype implementation available
to the public, we enable other researchers to closely examine it
and build on top of it for their own projects. Lastly, it appears
that their system goals differ from ours. To avoid potential
human errors during the development of attack detection rules,
Sadikin et al. combined their rule-based approach with the use
of machine learning algorithms. On the other hand, we focus
specifically on the development of robust attack detection rules
to avoid potential false positives due to overfitting.

Since we were interested in testing our prototype’s mon-
itoring capabilities during an aggressive energy depletion
attack that an outside attacker could launch, we surveyed the
literature for relevant attacks. The attack that appeared to be
the closest to meeting our requirements was introduced by
Cao et al., where the attacker is spoofing packets with valid
unencrypted headers, but with the encrypted payload and mes-
sage integrity code of each spoofed packet containing arbitrary
data, so that the receiver will waste its energy receiving them
and performing unnecessary security computations [15]. While
the core idea of their attack is sound, it appears that they did
not consider the fact that real-world battery-powered Zigbee
devices are typically using Data Requests to poll for pending
packets whenever they enable their receivers [2, p. 39]. Al-
though other researchers have pointed out that Data Requests
can be abused for energy depletion purposes [16], we are not
aware of any previous work that demonstrates the impact of a
fully developed version of such an attack against commercial



Fig. 1. Overview of the system architecture that we developed for monitoring the security of Zigbee networks.

Zigbee devices. Our attack was specifically designed to exploit
the way that Zigbee devices are currently handling Data
Requests by selectively jamming them and injecting spoofed
packets. In addition, we introduce further improvements to the
attacker’s main strategy that prevent the targeted device from
disconnecting from its network and make the aggressiveness of
our attack configurable. Finally, while Cao et al. analyzed their
attack using simulations and development boards, we tested
our attack against four commercial battery-powered Zigbee
devices that can be found in real-world smart homes.

III. SYSTEM ARCHITECTURE

As we show in Fig. 1, HiveGuard consists of four compo-
nents: a retention server, an aggregation server, an inspection
server, and a web server. In Section III-A we describe their key
responsibilities and how they should interact with the rest com-
ponents of the architecture, while in Sections III-B and III-C
we provide details about our prototype implementation.

A. Overview of HiveGuard

The retention server periodically sends HTTP GET requests
to the WIDS sensors to retrieve their lists of compressed pcap
files and request a copy for each previously unknown file. This
process is expected to run on a host machine with sufficient
resources for long-term storage of these files. HiveGuard users
can then retrieve the full list of archived files from the retention
server and download specific ones with HTTP GET requests,
while it also accepts HTTP GET and PUT requests regarding
the list of WIDS sensors from which it is archiving files.

The aggregation server periodically sends HTTP GET re-
quests to the WIDS sensors to aggregate data about the oper-
ation of the Zigbee network and store them in a database. The
aggregation server exposes REST API endpoints that enable
the registration of new WIDS sensors and deregistration of old
ones using HTTP POST and DELETE requests respectively.
This information is also stored in the database, with the
aggregation server updating the retention server regarding any
changes in that list. Furthermore, the aggregation server can
collect data about the WIDS sensors themselves, enabling the
detection of unexpectedly underutilized or overutilized WIDS
sensors. In addition, the aggregation server can make sure that

all WIDS sensors are using all known keys, since new ones
can be issued during the operation of the Zigbee network.

The inspection server periodically processes the data that
are stored in the database and exposes them through its REST
API endpoints. Furthermore, the inspection server generates
alerts for events that were detected either by a WIDS sensor or
during its own analysis routine. In our system architecture, the
WIDS sensors are performing detection tasks for attacks that
can be detected by the stateless examination of a single packet,
while the inspection server is performing detection tasks for
attacks that require the examination of multiple packets and
potentially a holistic view of the Zigbee network. Although
the generated alerts can be periodically requested from the
frontend application, since the HiveGuard user may not be
using it at the time that a critical event was detected, the
inspection server should also be able to interact with a server
that can notify them within a reasonable amount of time, such
as an SMTP server in order to send email notifications.

The web server statically serves the frontend application
to run on the HiveGuard user’s web browser. The frontend
application provides a user interface that enables the network
administrator to easily interact with HiveGuard’s backend
servers. This includes fetching data from the inspection server
and presenting them in an appropriate format. At the very
least, the frontend application should be capable of generating
line charts, bar charts, tables, and graphs. Finally, the frontend
application should also enable the network administrator to
change the system’s configuration and access archived data.

B. HiveGuard Prototype Implementation Details

We developed HiveGuard in JavaScript, with its source
code being organized into three repositories: one for its
command-line interface1 that has been implemented as a
Node.js script [17], one for its backend servers2 that have
been implemented as Node.js modules that utilize the Express
framework [18], and one for its frontend application3 that has
been implemented as a set of React components [19]. Our

1https://github.com/akestoridis/hiveguard
2https://github.com/akestoridis/hiveguard-backend
3https://github.com/akestoridis/hiveguard-frontend



Fig. 2. HiveGuard’s topology page during the monitoring of a Zigbee network with 7 nodes.

prototype is currently interacting with a PostgreSQL database
server [20], whereas our inspection server is currently using
the Nodemailer module [21] to send email notifications.

In our current implementation, the inspection server is
periodically analyzing NWK auxiliary frame counters to make
sure that there are no unexpected decreases in value, since this
would indicate that a nearby attacker may be impersonating a
device. All alerts are initially considered unread so that they
can be requested separately from the archived ones. However,
since several alerts with the same message can be generated in
a short amount of time, we introduced a configurable cooldown
period for the email notification process so that emails will be
sent only for alerts whose messages were not included in a
recently sent email. We implemented multiple pages for our
frontend application that fetch data from the inspection server
and then present them in an appropriate format. For example,
Fig. 2 demonstrates how our frontend application presents
fetched topology data. As for our command-line interface,
it allows the user to select the set of HiveGuard’s backend
servers that they would like to launch, define the necessary
environment variables, and override the default configuration.

C. WIDS Sensor Prototype Implementation Details

We wrote our WIDS sensor software on top of Zigator [22]
and made enhancements to Scapy [23] in order to dissect the
payload of certain Zigbee packets, which we have submitted
to their repositories. Essentially, we made Zigator operate as a
stand-alone WIDS sensor that can expose REST API endpoints
by utilizing the CherryPy framework [24]. Since the WIDS
sensors are expected to have very limited storage resources,
we made their packet capturing process configurable so that
HiveGuard’s retention server can archive each compressed
pcap file before it would have to be deleted. We now describe
the events that our WIDS sensors can currently detect.

PAN ID Conflicts. Security researchers have demonstrated
that attackers can disconnect Zigbee devices from their net-
works by causing PAN ID conflicts [6], [25]. A WIDS sensor

can detect PAN ID conflicts simply by examining whether a
captured beacon uses the same PAN ID as the user’s Zigbee
network, but a different Extended PAN ID. Although the
firmware of several Zigbee Coordinators has been modified
since then to completely ignore PAN ID conflicts, such as
the firmware of SmartThings hubs [26], we argue that the
network administrator should still be notified about PAN ID
conflicts and take appropriate actions based on whether they
were malicious or benign ones through closer inspection.

Unsecured Rejoin Requests. Some Zigbee Coordinators
accept unsecured rejoin requests, which an attacker can ex-
ploit to obtain the victim’s network key by spoofing such
packets [25], [27]. By monitoring unsecured rejoin requests,
the network administrator can identify either the presence of
malicious users or benign reconnection attempts from devices
that they may decide to replace for security reasons.

Key Leakages. A Zigbee device can receive a key through
a Transport-Key command, which is typically protected by a
Trust Center link key that the sender and the receiver already
share, such as the default one [3, p. 377] or one derived from
an install code [28, p. 73]. However, given that the default
key is publicly known [7] and install codes can be leaked [6],
an attacker may still be able to obtain the transported key.
Our WIDS sensors can be configured to detect Transport-Key
commands that are protected by a key that an attacker may
also have access to. By notifying the network administrator
about such events, they can identify when a key could have
been leaked to an attacker that was capturing Zigbee traffic.

Low Battery Reports. While some battery-powered Zigbee
devices are using the Power Configuration cluster to report
their remaining battery percentages [29, p. 3-13], others are
using the IAS Zone cluster to report that their battery statuses
are below some threshold [29, p. 8-2]. The WIDS sensors
should keep track of these low battery reports so that the
network administrator can be notified about them and either
prepare for a battery replacement or perform an inspection if
they are being notified more frequently than expected.



IV. ENERGY DEPLETION ATTACK

Although we were able to test our prototype’s monitoring
capabilities during the typical operation of a Zigbee network
and against single-packet spoofing attacks, we also wanted to
make sure that it was capable of monitoring aggressive attacks.
For that reason, we developed an energy depletion attack
that improves upon the attack that Cao et al. presented [15],
as we explained in Section II. In Section IV-A we describe
how an outside attacker can exploit the current handling
of Data Requests in Zigbee networks to deplete the energy
of Zigbee End Devices, while in Section IV-B we provide
technical details about our proof-of-concept implementation.
Both our attack and our related findings from Section V were
responsibly disclosed to the Connectivity Standards Alliance
(formerly known as the Zigbee Alliance) in May 2021.

A. Overview of Our Attack

Battery-powered Zigbee devices typically operate as Zigbee
End Devices to conserve their energy by disabling their
receivers whenever they are idle and relying on a Zigbee
Router or the Zigbee Coordinator for routing their packets.
Essentially, each Zigbee End Device is considered a child
device and directly interacts only with one Zigbee Router or
the Zigbee Coordinator, which is considered its parent device
and typically keeps its receiver enabled whenever it is idle.

As we show in Fig. 3, the child device sends a Data Request
to its parent device to poll for pending packets, shortly after
it has enabled its receiver. In this example, the parent device
does not carry any pending packets for that child device, so
it responds with a MAC acknowledgment that has the Frame
Pending field set to zero. Shortly after the reception of that
acknowledgment, the child device disables its receiver again.
However, it is possible for an outside attacker to interfere
with the transmission of Data Requests by selectively jamming
them, since Data Requests can be identified as they are being
transmitted by observing certain header fields, as we explain
in Section IV-B. With the parent device unable to receive
the Data Request, the attacker transmits a spoofed MAC
acknowledgment in its place with the Frame Pending field set
to one. This causes the child device to keep its receiver enabled
in anticipation of a pending packet, which the attacker exploits
by impersonating its parent device using a spoofed 127-byte
packet that contains supposedly encrypted and authenticated
data, with its Frame Pending and Acknowledgment Request
fields being set to one, that in turn causes the child device
to send a MAC acknowledgment and a new Data Request
shortly after that. The attacker can then repeat the same steps
to prevent the child device from entering its energy-saving
sleep mode and make it waste its energy receiving spoofed
packets and performing unnecessary security computations.

If the attacker follows the aforementioned process indefi-
nitely, the parent device will not be able to send any legitimate
packets to the child device. That can result in the child device
disconnecting from its network, which is not a desired outcome
for an attacker whose goal is to completely deplete its energy
because that would make it stop sending Data Requests. For

Fig. 3. An outside attacker can prevent a child device from returning to
its energy-saving sleep mode by selectively jamming its Data Requests and
spoofing packets with supposedly encrypted and authenticated data, while
repeatedly claiming that there are additional packets destined for that child
device. To prevent the child device from disconnecting from its network, the
outside attacker occasionally allows it to communicate with its parent device.

that reason, the attacker is occasionally allowing the Data
Requests of the child device to reach its parent device and
potentially exchange further packets, either because a specific
packet was observed or a specific amount of time has passed
since the last time that they were allowed to communicate, as
we explain in Section IV-B. The attacker can send spoofed
packets for less than the typical time between two Data
Requests to go completely unnoticed if there is no appropriate
network security monitoring system in place. On the other
hand, by sending spoofed packets for longer periods of time,
the attacker can deplete the child device’s energy faster.

B. Proof-of-Concept Implementation Details

Even though forged Zigbee packets can be injected by
using software tools like KillerBee [30] and Zigator [22],
selective jamming attacks have to be implemented in firmware
to change the transceiver’s state in time [6]. We implemented
our energy depletion attack in C for an IEEE 802.15.4 USB
adapter, called ATUSB [31], by leveraging the framework of
the atusb-attacks repository [32]. We now describe our
proof-of-concept implementation, which we will submit to the
atusb-attacks repository as the attack with ID 13.



Attack Life Cycle. In our proof-of-concept implementa-
tion, we broke down the life cycle of our attack into (a)
an active period, (b) an idle period, and (c) a wait period.
During the active period, the ATUSB is selectively jamming
Data Requests and injecting spoofed packets. After the active
period, the ATUSB transitions to the idle period, during
which it allows the targeted child device to communicate with
its parent device freely. After the idle period, the ATUSB
transitions to the wait period, during which it is waiting for
a Data Request to transition back to the active period. We
configured the Timer/Counter0 of the ATUSB’s ATmega32U2
microcontroller so that it can keep track of time [33, p. 91],
with the duration of the active and idle periods being specified
during the building process of our modified firmware. In our
current implementation, we restart the idle period whenever (a)
a NWK command was transmitted either by or for the targeted
child device or (b) an Association Request was transmitted for
the targeted network. The first scenario aids in keeping the
devices connected to their network (e.g., by allowing Rejoin
Requests), while the second scenario allows the addition of
new devices. We also restart the wait period whenever there is
a lack of Data Requests during an active period, so that if the
targeted child device entered its sleep mode unexpectedly (e.g.,
because a jamming or spoofing attempt failed), the ATUSB
will restart its active period during the next Data Request.

Selective Jamming. An attacker can identify Data Requests
as they are being transmitted because, given the set of MAC
commands that are typically observed in Zigbee networks [6],
these are the only MAC commands that can have a packet
length of 12 bytes due to their use of short addresses and
the lack of command payload [2, p. 71]. We programmed our
ATUSB to process each receiving packet byte by byte, which
is supported by its AT86RF231 transceiver [34, p. 126], so that
it can transition from its receive state to its transmit state in
time to jam a detected Data Request. We also programmed our
ATUSB to perform a set of sanity checks for each receiving
packet and to make sure that it is destined for the targeted
network. Whenever a received packet satisfies all the jamming
conditions during an active period, the ATUSB transmits a 1-
byte packet to corrupt its Frame Check Sequence (FCS) field,
which causes the parent device to discard it. The ATUSB then
transmits a spoofed MAC acknowledgment and a spoofed 127-
byte packet, as we described in Section IV-A, after which it
transitions back to receiving packets one byte at a time.

Attack Validation. In order to validate our proof-of-
concept implementation, we captured I/Q signals to closely
observe the interactions between an ATUSB with our mod-
ified firmware and the commercial Zigbee devices that we
describe in Section V. We achieved that by using a USRP
N210 [35] and GNU Radio [36], along with the gr-foo
and gr-ieee802-15-4 modules [37]–[39], as well as the
GRC flow graphs of the grc-ieee802154 repository [40].
We provide the magnitude of a captured I/Q signal in Fig. 4,
where we initially see one of our Zigbee End Devices sending
a Data Request to our Zigbee Coordinator for the first time
since it exited from its sleep mode. Notice that the Data

Fig. 4. The magnitude of a captured I/Q signal during the first few
milliseconds of our attack against a commercial Zigbee End Device.

Request overlapped with a 1-byte packet that our ATUSB
injected, with our Zigbee Coordinator not acknowledging it
as a result of that. This was then followed by a spoofed MAC
acknowledgment and a spoofed 127-byte packet, with our
Zigbee End Device acknowledging the latter, which indicates
that it successfully passed its MAC-layer filtering process.
Even though the verification process expectedly failed on the
NWK layer, our Zigbee End Device still transmitted a new
Data Request shortly after that because the Frame Pending
field of the spoofed 127-byte packet was set to one. The same
pattern was then continued until our ATUSB allowed a Data
Request to be successfully received by our Zigbee Coordinator.

V. EXPERIMENTAL RESULTS

We now present the results of the experiments that we
conducted in order to test our HiveGuard prototype against our
energy depletion attack. Our experimental setup is described
in Section V-A, while in Section V-B we discuss our findings.

A. Setup

We conducted four experiments, where in each experiment
HiveGuard was monitoring a Zigbee network that consisted
of a Zigbee Coordinator and one Zigbee End Device that
was powered by a brand new 3-volt CR2450 lithium battery,
in an attempt to minimize the number of factors that would
contribute towards energy depletion, other than our attack.
More specifically, we did not send any actuation commands
and we avoided triggering their sensors. An ATUSB with our
modified firmware was placed next to the Zigbee Coordinator,
while the Zigbee End Device was placed about 4.5 meters
away from them. We did not launch our attack until after
about one hour had passed since we had paired the Zigbee
End Device with the Zigbee Coordinator. Our attack was then
launched by the ATUSB, which was configured to set the
NWK auxiliary frame counter of spoofed 127-byte packets
equal to 2600000, while the duration of each active and idle
period was equal to 300 seconds and 3 seconds respectively.
The ATUSB continued launching the attack until we noticed
that the Zigbee End Device was not transmitting any packets
for at least one hour. At the end of each experiment, we
stopped the attack and replaced the battery of the Zigbee End
Device in order to remove it from its network explicitly before
starting the next experiment. The Zigbee Coordinator was a
SmartThings Hub (IM6001-V3P01) for all four experiments,
while the battery-powered Zigbee devices that we used are
shown in Fig. 5 and are named in the first column of Table I.



Fig. 5. The commercial battery-powered Zigbee devices that we used.

Fig. 6. One of the WIDS sensors that we used for our prototype.

HiveGuard’s backend servers and a PostgreSQL server were
running as different processes on the same laptop computer
and were interacting with each other over the localhost in-
terface. Our HiveGuard prototype was also interacting with
two Raspberry Pis that were equipped with one ATUSB each,
as shown in Fig. 6, and our enhanced versions of Scapy and
Zigator. We had to cross-compile and flash a Linux kernel
image with the ATUSB transceiver driver built into it [41],
so that our Raspberry Pis could configure ATUSBs as IEEE
802.15.4 interfaces in monitor mode with wpan-tools [42].
Their interactions took place over a private LAN that we
assumed as trusted, so we used plain HTTP request methods,
and they were registered to operate as WIDS sensors using
rpi01 and rpi02 as their identifiers respectively. We placed
rpi01 close to the Zigbee Coordinator and rpi02 close to
the Zigbee End Device, so that we could examine potential
differences in their captured packets due to the presence of the
selective jammer. We organized the pcap files that HiveGuard
archived, from the start of each experiment until the Zigbee
End Device was not transmitting any packets for at least one
hour, into a dataset that will be available on CRAWDAD [43].

B. Discussion

As we would expect, HiveGuard was able to detect the
energy depletion attack and alert us that a nearby device
may be impersonating the 0x0000 node of our network,
i.e., our Zigbee Coordinator. More specifically, the attack was
detected by HiveGuard’s inspection server during its periodic
analysis of NWK auxiliary frame counters, where it found
that there where unexpected decreases in value, which can
also be observed from the corresponding page of HiveGuard’s
frontend application, shown in Fig. 7. For the spoofed 127-
byte packet to be processed by the Zigbee End Device, its
NWK auxiliary frame counter has to be higher than the one
that the Zigbee Coordinator last used. However, the Zigbee
Coordinator continues incrementing its NWK auxiliary frame
counter normally. As a result, the next time that the Zigbee
Coordinator transmits a legitimate packet with NWK-layer
security enabled, it will appear as if it decreased in value. Two
additional patterns that would give away the presence of such
an attacker are the rapid usage of different MAC sequence
numbers, as we can observe in Fig. 8, and the increase in

Fig. 7. HiveGuard’s header fields page, shortly after the attack against our
SmartThings Button started, showing the NWK auxiliary frame counters that
our SmartThings Hub used according to the rpi02 WIDS sensor.

Fig. 8. HiveGuard’s header fields page, shortly after the attack against our
SmartThings Button started, showing the MAC sequence numbers that our
SmartThings Button used according to the rpi02 WIDS sensor.

the number of new packets per minute, which can be seen in
Fig. 9. Furthermore, the observation of packets with valid FCS
values but invalid message integrity codes could also be used
as another detection rule for such attacks. HiveGuard raised
two more unique alerts during our experiments. The first alert
was for potential key leakage due to the usage of the default
Trust Center link key during the association processes of our
SmartThings Motion Sensor and our SmartThings Multipur-
pose Sensor (F-MLT-US-2). These two devices were also the
cause of the second alert, which was about their low battery
reports. We did not observe any low battery reports from



Fig. 9. HiveGuard’s packet counters page, shortly after the attack against our SmartThings Button started, showing data collected by the rpi02 WIDS sensor.

our SmartThings Button and our SmartThings Multipurpose
Sensor (IM6001-MPP01), while there was no key leakage alert
about these two devices because we were able to use their
install codes during their association processes.

We broke down each experiment into three phases, which
we are using in Table I to report the perceived amount of
time that our battery-powered Zigbee devices spent in each
phase. The first phase started when our Zigbee End Device
began its association process and ended when our ATUSB
transmitted the first spoofed 127-byte packet. As we described
in Section V-A, this phase lasted about one hour without
launching any attack. In Fig. 10 we provide a screenshot
from Wireshark’s GUI under Zigbee configuration [44], [45]
that shows the transition from the first to the second phase
of the experiment where our SmartThings Button was used.
As we can see, our SmartThings Button was transmitting
a Data Request approximately every 7 seconds when there
were no pending packets for it. However, once our ATUSB
entered its active period, indicated by the 12-byte packets with
invalid FCS values due to selective jamming and the spoofed
127-byte packets with supposedly encrypted and authenticated
data, our SmartThings Button was transmitting Data Requests
much more frequently and was wasting its energy processing
our spoofed packets. By the time the second phase ended,
our battery-powered Zigbee devices were practically unusable
because they stopped sending Data Requests. After that, our
battery-powered Zigbee devices repeatedly transmitted either
Orphan Notifications or Beacon Requests, which we consider
as the third phase. We believe that this behavior change was
caused by their very low remaining battery percentages. The
end of the third phase was determined by the last captured
packet that was transmitted by the targeted device with a valid
FCS value. As it can be observed by summing the values in
each row of Table I, we were able to deplete the energy of each
of our battery-powered Zigbee devices in less than 16 hours,

Fig. 10. Captured packets by the rpi01 WIDS sensor at the beginning of
the attack against our SmartThings Button.

even though we started each experiment by using a 3-volt
CR2450 lithium battery that was never used before.

VI. CONCLUSION

In this work we present a distributed system for moni-
toring the security of Zigbee networks, called HiveGuard,
that consists of four components. The first one corresponds
to a retention server, whose main purpose is the archiving
of compressed pcap files. The second one is an aggregation
server, which is mainly responsible for aggregating data and
events. The third one corresponds to an inspection server that
is responsible for analyzing aggregated data and events, as well
as generating alerts. The fourth component is a web server,
which is serving HiveGuard’s frontend application that in turn
provides visualization services. We implemented HiveGuard
in JavaScript and enhanced Python tools to deploy WIDS
sensors. We also implemented an energy depletion attack
in C, which exploits the current handling of Data Requests in



TABLE I
PERCEIVED AMOUNT OF TIME SPENT BY OUR BATTERY-POWERED ZIGBEE DEVICES IN THE DIFFERENT PHASES OF OUR EXPERIMENTS.

Device Name Time Between the First Time Between the Time Between the Last
Beacon Request and the First and the Last Spoofed NWK Data and

First Spoofed NWK Data Spoofed NWK Data the Last Valid Packet
SmartThings Motion Sensor (F-IRM-US-2) 1.02 hours 6.53 hours 2.66 hours
SmartThings Multipurpose Sensor (F-MLT-US-2) 1.01 hours 3.89 hours 5.58 hours
SmartThings Button (IM6001-BTP01) 1.01 hours 3.93 hours 1.92 hours
SmartThings Multipurpose Sensor (IM6001-MPP01) 1.05 hours 14.17 hours 0.29 hours

Zigbee networks, in order to test our prototype’s monitoring
capabilities. Our experiments show that it is possible for an
outside attacker to deplete the energy of four commercial
Zigbee devices, each powered by one 3-volt CR2450 lithium
battery, in a relatively short amount of time. Our HiveGuard
prototype sent us appropriate notifications about the attacks
that we launched and enabled us to examine the operation of
our Zigbee network. Finally, we are publicly releasing our
source code and our captured packets to enable others to
examine them and potentially use them for their own projects.
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